Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Chemosphere ; 311(Pt 2): 137209, 2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2239698

ABSTRACT

Despite increasing the public awareness of ubiquity of microplastics (MPs) in air, the issue on particular source of tire wear particles (TWPs) emission into atmosphere and their exposure-associated human health has not received the attention it deserves. Here we linked vehicle kilometers traveled (VKT) estimates covering demography, socio-environmental, and transportation features and emission factors to predict regional emission patterns of TWP-derived atmospheric MPs. A data-driven probabilistic approach was developed to consider variability across the datasets and uncertainty of model parameters in terms of country-level and vehicle-type emissions. We showed that country-specific VKT from billion to trillion vehicle-kilometer resulted in 103-105 metric tons of airborne TWP-derived atmospheric MPs annually in the period 2015-2019, with the highest emissions from passenger cars and heavy-duty vehicles. On average, we found that airborne TWP emissions from passenger cars by country had substantial decreased (up to ∼33%) during COVID-19 lockdowns in 2020 and pronounced increased (by a factor ∼1.9) from vehicle electrification by the next three decades. We conclude that the stunning mass of airborne TWP is a predominant source of atmospheric MP. We underscore the necessity of TWP emissions control among the United States, China, and India. Our findings can be of great use to environmental transportation planners for devising vehicle/tire-oriented decision support tools. Our data offer information to enhance TWP-exposure estimates, to examine long-term exposure trends, and subsequently to improve health risk assessment during pandemic outbreak and future electrification.

2.
Int J Environ Res Public Health ; 19(11)2022 05 31.
Article in English | MEDLINE | ID: covidwho-1892870

ABSTRACT

Fertilizers are made from manure, but they are also produced through chemical processes. Fertilizer is an ammonia emission source; it releases ammonia when used. Ammonia is also emitted during the production process. Although many studies related to fertilizer application have been conducted, there are few research cases related to the production process and related emissions are not calculated. In this study, the ammonia emissions from NPK (nitrogen phosphorus Potassium oxide) fertilizer production facilities were checked through actual measurement and related characteristics were analyzed. In addition, emission factors were developed, and the necessity of developing emission factors was also confirmed. As a result of the development of the emission factor, it was found to be 0.001 kgNH3/ton, which is like the range of emission factors in related fields. The NPK ammonia emission factor of this study was found to be higher than the minimum emission factor currently applied in South Korea, and it was judged to be a level that can be used as an emission factor.


Subject(s)
Ammonia , Fertilizers , Agriculture , Ammonia/analysis , Manure , Nitric Oxide , Nitrogen , Nitrous Oxide/analysis , Soil
3.
Journal of Marine Science and Engineering ; 10(1):96, 2022.
Article in English | ProQuest Central | ID: covidwho-1632667

ABSTRACT

Indicators of environmental policies in force in Mexico, fossil fuels will continue to be used in industrial sectors, especially marine fuels, such as marine diesel oil, in port systems for some time. Considering this, we have evaluated several methods corresponding to a top-down system for determining fuel consumption and sulfur dioxide atmospheric emissions for the port of Veracruz in 2020 by type of ship on a daily resolution, considering a sulfur content of 0.5% mass by mass in marine fuel. After analyzing seven methods for determining sulfur dioxide atmospheric emission levels, Goldsworthy’s method was found to be the best option to characterize this port. The port system has two maritime zones, one of which is in expansion, which represented 55.66% of fuel consumption and 23.05% of atmospheric emissions according to the typology of vessels. We found that higher fuel consumption corresponded to container vessels, and tanker vessels represented higher atmospheric emission levels in the berthing position. The main differences that we found in the analysis of the seven methods of the top-down system corresponded to the load factor parameter, main and auxiliary engine power, and estimation of fuel consumption by type of vessel.

SELECTION OF CITATIONS
SEARCH DETAIL